Wednesday, September 12, 2012

Universities to Lead Energy Department-Funded CSP Projects

Wednesday, September 12, 2012
The Energy Department announced on August 28 new investments totaling $10 million for two university-led projects to advance innovative concentrating solar power (CSP) system technologies. The five-year projects are under the Department's SunShot Initiative, a collaborative national effort to make solar energy cost competitive with other forms of energy by the end of the decade.

CSP technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat that can be used to produce electricity. Heat transfer fluids are a key component of CSP systems that transfer heat from a receiver to the point where the heat is needed to drive a turbine. The investments will improve heat transfer fluids to increase efficiency and lower costs for CSP systems.

Two university teams were selected to develop new heat transfer fluids. The University of California–Los Angeles will lead a team with researchers from Yale University and the University of California–Berkeley to investigate liquid metals as potential heat transfer fluids with the ability to withstand higher temperatures. And the University of Arizona, the second awardee, is teaming with researchers from Arizona State University and Georgia Tech to develop and demonstrate new, molten salt-based fluids as possible alternatives to traditional heat transfer fluids.

The projects will focus on making dramatic improvements to fluids that gather thermal energy from the sun and transport it to the power block, where the energy is used to drive a turbine that generates electricity. Today's state-of the-art heat transfer fluids are capable of operating at temperatures up to about 1,050 degrees Fahrenheit. Temperatures in excess of 1,200 degrees Fahrenheit are needed to reach efficiencies greater than 50%, which allow CSP plants to capture more energy from solar power. The selected projects are working to develop heat transfer fluids that can operate at temperatures up to 2,350 degrees Fahrenheit, while simultaneously maintaining high levels of performance. See the Energy Department press release.

View the original article here

0 коммент.:

Post a Comment